Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization

نویسندگان

  • Jose A. Gavira
  • Andry Cera-Manjarres
  • Katia Ortiz
  • Janet Mendez
  • Jose A. Jimenez-Torres
  • Luis D. Patiño-Lopez
  • Madeline Torres-Lugo
چکیده

Poly(ethylene glycol) (PEG) hydrogels are highly biocompatible materials extensively used for biomedical and pharmaceutical applications, controlled drug release, and tissue engineering. In this work, PEG cross-linked hydrogels, synthesized under various conditions, were used to grow lysozyme crystals by the counterdiffusion technique. Crystallization experiments were conducted using a three-layer arrangement. Results demonstrated that PEG fibers were incorporated within lysozyme crystals controlling the final crystal shape. PEG hydrogels also induced the nucleation of lysozyme crystals to a higher extent than agarose. PEG hydrogels can also be used at higher concentrations (20-50% w/w) as a separation chamber (plug) in counterdiffusion experiments. In this case, PEG hydrogels control the diffusion of the crystallization agent and therefore may be used to tailor the supersaturation to fine-tune crystal size. As an example, insulin crystals were grown in 10% (w/w) PEG hydrogel. The resulting crystals were of an approximate size of 500 μm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.

Marrow-derived osteoblasts were cultured on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) based hydrogels modified in bulk with a covalently linked RGDS model peptide. A poly(ethylene glycol) spacer arm was utilized to covalently link the peptide to the hydrogel. Three P(PF-co-EG) block copolymers were synthesized with varying poly(ethylene glycol) block lengths relative to poly(eth...

متن کامل

Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.

While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs int...

متن کامل

Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.

Our laboratory is currently exploring synthetic oligo(poly(ethylene glycol)fumarate) (OPF)-based biomaterials as a means to deliver fibroblasts to promote regeneration of central/partial defects in tendons and ligaments. In order to further modulate the swelling and degradative characteristics of OPF-based hydrogels, OPF crosslinking via a radically initiated, mixed-mode reaction involving poly...

متن کامل

Thixotropic Supramolecular Pectin-Poly(Ethylene Glycol) Methacrylate (PEGMA) Hydrogels

Pectin is an anionic, water-soluble polymer predominantly consisting of covalently 1,4-linked α-D-galacturonic acid units. This naturally occurring, renewable and biodegradable polymer is underutilized in polymer science due to its insolubility in organic solvents, which renders conventional polymerization methods impractical. To circumvent this problem, cerium-initiated radical polymerization ...

متن کامل

Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.

A class of new biodegradable hydrogels based on poly(ethylene glycol) methacrylate-graft-poly(glutamic acid) and poly(ethylene glycol) dimethacrylate was synthesized by photoinduced polymerization. Because all the polymeric constituents were highly hydrophilic, crosslinking could be performed in aqueous solutions. This type of crosslinked hydrogel was prepared by modifying a select number of ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014